您的位置: turnitin查重官网> 工程 >> 安全工程 >视频检测技术在交通事件检测中应用

视频检测技术在交通事件检测中应用

收藏本文 2024-01-16 点赞:4562 浏览:12740 作者:网友投稿原创标记本站原创

摘要:自二十世纪八十年代以来,智能交通系统(ITS)概念被提出后,视频检测技术在交通事件的自动化检测中的应用研究得到了极大的关注。本文分析了交通事件检测技术存在的主要问题,研究了基于视频的交通事件检测系

源于:论文的基本格式www.udooo.com

统中的关键技术,在此基础上提出了违章停车、行人、车速、车流量检测的方法,并对所采集的某路段视频,进行实验,实验结果证明,算法满足了实时跟踪的要求,给出的事件检测算法能够准确的检测出车辆的异常行为,并实现事件的自动报警。
关键词:交通事件 视频检测 监控 算法

美国加州Jet Propulsion 实验室于1978年使用视频技术来检测车辆的运行,标志着视频检测技术的开始。视频检测技术以数字图像为基础,内容涉及数字图像处理、模式识别、计算机视觉、人工智能等诸多领域和学科。它的主要任务是实现对交通事件的自动快速检测,提供准确的路况信息,与传统的检测技术相比视频检测具有检测区域大、检测参数多、安装维护无干扰、实施灵活、可视性先进性好等特点,普遍应用于交通监控系统,实现了管理者对交通情况的可视化管理。
视频检测技术介绍
视频检测技术在传统的电视监控系统基础上将计算机视觉引入到交通信息检测之中,通过计算机从数字图像中提取出高级交通信息,实现对交通事件,如逆行事件、慢性事件、超速事件、变道事件、行人检测、违章停车事件等的自动快速检测。其工作流程图如图

1.1所示:


检测算法流程:确定检测区域;建立背景模型;确认目标:对检测区域进行确认, 判断是目标或背景;目标分割(检测):通过识别出图像中符合目标特征的像素,将待识别的目标从背景中分离出来;目标跟踪:依据提取出的特征匹配前后帧中的目标;目标分类:指依据几何外形、纹理特征等对不同类型的目标进行分类;后处理:根据应用需求确定交通事件等。该算法实现了对交通事件的自动快速检测,为ITS的实施提供真实准确、及时的信息。

二、视频检测技术在交通事件检测中的应用

2.1 违章停车检测

检测原理:通过对摄像机拍摄到的图像序列进行分析,检测场景中的运动目标并进行目标提取与检测,进一步对目标运动参数进行估计。
检测算法流程:利用所采集的视频,提取出背景图像。将当前图像灰度后与背景图像进行背景差分,对背景差分后的图像进行OTSU阈值分割,通过背景差分得到运动目标区域,并对其进行标记,如连续500帧内车辆未发生明显的移动,则判断该车辆处于静止状态,否则说明有违章车辆经过,给出车辆违章停车信号,启动报警系统,同时将当前全景视频图像进行保存。这种基于视频检测技术的违章停车检测算法,检测全面、使用方便、实时性强、更具说服力,漏检率和检测时间也比较理想。

2.2 行人检测

检测原理:对图像识别和分割后的目标图像进行特征提取,包括目标区域的面积、长宽比、速度,从而便于图像分类(或图像识别)。
检测算法流程:在背景提取和二值化图像的前提下对目标区域进行连通标记,得到最小外接矩形面积M。通过对目标外接矩形的面积与长宽比的计算以及目标区域的速度来进一步确定目标的类型。行人的二值化面积比车辆的二值化面积小,行人的长宽比较大,车辆的外接矩形的长宽比更接近1,车辆的行驶速度比行人约大4—6倍。该算法能快速确定目标类型,从而对行人事件和停车事件加以区别。

2.3 车速检测

检测原理:目标在图像中的行驶速度即像素速度,并非是实际路面中以米为单位的距离,但它与实际路面距离有一定的对应关系。实际测量中采用通过查找距离映射表的方法,通过对视频图像的标定建立图像像素坐标和实际路面的对应关系,查找两帧图像中的车辆位置点在路面中的实际距离便可知道车辆在一定时间内移动的实际距离,此时就获得连车辆在实际路面的行驶速度。
检测算法流程:获取目标区域,得到车尾点位置信息,确定跟踪区域,找出代目标车辆特征值,在映射表中查找这些特征点在实际路面上的实际距离,最后用最小二乘法拟合车辆速度。
该算法具有可行性和适应性,快速的检测出车辆运行速度,维护道路的正常通行秩序。

2.4 车流量检测

检测原理:为了加快计算速度,通常只需截取一定宽度、高度,包含判别所需的足够信息的检测带,根据检测带内车辆信息的变化规律进行计数。
检测算法流程:对检测带中的像素进行处理、判别。用‘1’表示检测带内相应位置无车辆变化的信息,用‘0’表示检测带内相应位置无车辆变化的信息,则带内车辆变化的信息就完全可以用帧的数据流表示。例如:00011111000000001111100000,再用检测带内车辆信息的变化规律进行计数。如果用当前帧的数据流减去上一帧的数据流则只可能出现4种情况和3种结果:①上一帧某位置没有车,当前帧对应位置也没有车:0减0,结果为0;②上一帧某位置有车,当前帧对应位置也有车:1减1,结果为0;③上一帧某位置没有车,当前帧对应位置有车:1减0 ,结果为1;④上一帧某位置有车,当前帧对应位置没有车:0减1 ,结果为-1 。显然,结果为‘1’,表示有新的车辆到来;;结果为‘- 1’,表示车辆已离开。利用该结果就可以方便地进行车辆的计数。该算法运算量小,可是DSP实现高速实时采集、处理图像,且不受车速限制。
视频交通检测关键技术研究展望
由于视频检测技术受环境影响大,算法复杂,且相对不太成熟,在未来的发展中会致力于复杂背景下运动目标的检测、跟踪、分类;背景技术的更新;障碍物、运动车辆遮挡问题;彩色信息的提取;同一个图像中多种目标识别与特征提取;基于二维图图像的三维信息的提取等方面。
结语
目前,视频检测技术已广泛应用于交通视频监控系统。实时在线的检测道路交通秩序、状态,对停车、拥堵等异常状态立即报警,最大程度的避免二次事故发生,减轻交通监管人员的工作强度。随着智能交通的不断进步,视频检测技术也将运用于抛落物检测,火灾检测,人脸识别等,为环境保护、人类生活、工业交通的发展作出巨大贡献。
参考文献:
何楠楠. 智能监控中高效运动目标检测方法研究[J]. 自然科学报,2009,(4).
张洪斌. 基于视频图像处理的交通事件检测系统[J]. 计算机应用, 2008,(7)
[3] 郭博学. 运动车辆视频分割与跟踪技术研究[J]. 电子测量技术,2009,(9)

copyright 2003-2024 Copyright©2020 Powered by 网络信息技术有限公司 备案号: 粤2017400971号