您的位置: turnitin查重官网> 工程 >> 材料工程 >试议奥氏体先进高强塑性QPT钢增塑机制与其动态力学性能

试议奥氏体先进高强塑性QPT钢增塑机制与其动态力学性能

收藏本文 2024-02-02 点赞:13054 浏览:49631 作者:网友投稿原创标记本站原创

摘要:先进高强度钢(AHSS)的进展走势是研发更高强度的C-Mn-Si系廉价钢并保持足够的塑性,以期实现钢件轻量化,达到节约能源和资源、实现汽车节能减排以而保护环境等目的。为此,本论文根据徐祖耀院士提出的新一代(第三代)先进高强度钢淬火-分配-回火(Q-P-T)热处理工艺新思想,设计了高强塑性的低碳Q-P-T钢的成分(Fe-0.25C-1.48Mn-1.20Si-1.51Ni-0.05Nb (wt.%))和合理的Q-P-T工艺。通过X射线衍射(XRD)、扫描电镜(SEM)、透射电镜(TEM)和力学性能测试等实验手段系统探讨了新型Q-P-T工艺和传统QT(淬火和回火)工艺对钢种的力学性能(包括准静态拉伸、动态力学性能和冲击力学性能)和微观组织的影响,揭示了Q-P-T钢较QT钢具有高强塑性的微观机制,探讨了Q-P-T钢在不同形变温度条件下的微观组织及其对力学性能的影响。通过低碳Q-P-T钢和贝氏体钢中平均位错密度的测定和TEM的观察,验证了低碳Q-P-T钢中残余奥氏体吸收位错(DARA)效应的有着,同时发现贝氏体钢中也有着DARA新效应,以而提出了DARA效应产生的两个条件,进一步阐明了残余奥氏体增强高强度钢塑性的微观机制。主要的探讨内容和成果如下:(1)设计了一种含Nb微合金化元素的低碳Q-P-T钢,基于Speer等人提出的“约束碳准平衡”(CCE)热力学论述模型,对室温残余奥氏体含量与淬火温度(Tq)的联系做了论述预测,继而设计出合理的Q-P-T工艺。设计的低碳Q-P-T钢展现了非常好的高强塑性,抗拉强度高达1322MPa,延伸率和强塑积分别可高达16.9%和22342MPa%,显示出优良的综合力学性能。但是设计钢种经传统QT工艺处理后,其抗拉强度提升至1438MPa,但其延伸率只有12.1%,强塑积为17400MPa%,远低于Q-P-T钢。冲击实验结果表明,Q-P-T钢室温(20℃)下的纵向冲击功(Akv)为36J,比QT钢的纵向冲击功(18J)增加了近一倍,Q-P-T钢展现出较QT钢更好的冲击韧性。TEM表征揭示出Q-P-T钢的高强度来源于高位错密度的板条马氏体(硬相)以及马氏体基体中弥散析出的大量的细小fcc NbC合金碳化物和少部分hcp ε过渡型碳化物(沉淀强化相),而高的塑性则归因于室温下大量“薄片状”富碳残余奥氏体(软相)的稳定有着。而QT钢中残余奥氏体呈现“薄膜状”,其含量在2%以下,远远小于Q-P-T钢,由此其塑性显著下降。(2)与传统QT工艺相比,新型Q-P-T工艺具有较高的淬火温度,这使得Q-P-T钢较QT钢含有更多的残余奥氏体;同时有效减少了引起微裂纹形成的淬火内应力和马氏体相变产生的内应力,由此提升了先进高强度Q-P-T钢的塑性和韧性。而且,较高的淬火温度减小了马氏体相变的驱动力,以而使Q-P-T钢具有更均匀的马氏体板条尺寸和更细小的板条马氏体,这有利于提升Q-P-T钢的强度和韧性,部分弥补了Q-P-T钢中马氏体含量减少引起的强度下降。这就是为什么Q-P-T钢比QT钢具有远高的塑性和韧性,而强度稍低于QT钢。(3)通过对不同形变温度(70℃~400℃)条件下Q-P-T钢的力学性能测试与残余奥氏体量的XRD测定,发现Q-P-T钢在70℃~300℃形变温度范围内的力学性能不亚于室温(20℃)的力学性能,同时在该温度范围内,残余奥氏体展现出良好的热稳定性,由此本论文探讨的低碳Q-P-T钢可在70℃~300℃温度范围时利用。不同形变温度条件下Q-P-T钢的TEM微观结构表征显示:在70℃~300℃温度范围内,Q-P-T钢高的强度来自于高位错密度的马氏体板条以及马氏体基体上弥散分布的fccNbC合金碳化物和hcp ε过渡型碳化物,而高的塑性来自于大量“薄片状”富碳残余奥氏体显著的相变诱发塑性(TRIP)效应和协调形变。当在300℃以上温度时,残余奥氏体量显著减少、脆性渗碳体开始形成,两者共同导致了其力学性能急剧恶化。本论文的探讨揭示了Q-P-T钢中Si元素的加入在低温阶段(70℃~300℃)可以抑制脆性渗碳体(Fe3C)的生成,但是在300℃以上的高温阶段却不能抑制残余奥氏体分解形成的渗碳体和ε过渡型碳化物开始转变成的渗碳体。(4)不同应变条件下低碳Q-P-T钢和贝氏体钢中残余奥氏体含量的XRD测定结果表明,残余奥氏体含量都随着应变的增加而减少,TEM观察均显示出形变孪晶马氏体,两者都证明了TRIP效应的有着。基于形变历程中马氏体(或贝氏体)和残余奥氏体中平均位错密度的X射线衍射线形浅析(XLPA)策略的测定和TEM的观察,验证了在中碳Q-P-T钢中最新发现的DARA效应在低碳Q-P-T钢中依然有着,同时发现贝氏体钢中也有着DARA新效应,即马氏体(或贝氏体)中的位错移动到相邻的残余奥氏体中,以而被残余奥氏体所“吸收”。DARA效应使马氏体(或贝氏体)硬相处于“软化态”或“未加工硬化态”,极大的增强了硬相马氏体(或贝氏体)与软相奥氏体的协调形变能力。(5)提出了DARA效应产生的两个条件:钢中应含有尽可能多的残余奥氏体(大于10%体积分数),马氏体(或贝氏体)和残余奥氏体两相应具有共格(或半共格)的界面。(6)残余奥氏体在形变历程中增强高强度钢塑性有三个相继的效应:DARA,TRIP和BCP(阻碍裂纹扩展)效应,三者共同构成残余奥氏体增强高强度钢塑性的微观机制。三种效应均相继增强了硬相马氏体(或贝氏体)与邻近残余奥氏体软相协调形变的能力,继而相继提升了高强度钢的塑性,同时,三种效应均随残余奥氏体量的增加而增强。足够多的残余奥氏体是保证先进高强马氏体(或贝氏体)钢具有良好塑性的先决条件。(7)首次探讨了新型Q-P-T钢的动态力学性能。通过对Q-P-T钢和QT钢进行不同应变速率下的动态力学性能测定,发现Q-P-T钢的抗拉强度和塑性较准静态都有了提升,且随着应变速率的提升,Q-P-T钢的抗拉强度和塑性均随之提升,显示出本探讨Q-P-T钢具有优良的动态力学性能。相反,QT钢强度提升的同时伴随着塑性稍有下降。同一应变速率条件下,Q-P-T钢较QT钢显示出更好的综合动态力学性能。本论文探讨的低碳Q-P-T钢的动态力学性能不亚于准静态的力学性能,由此本论文探讨的Q-P-T钢可在10~(-4)/s~10~3/s应变速率范围内利用。(8)浅析了高应变速率条件下Q-P-T钢的力学性能较准静态强度和塑性均提升的理由。高应变速率激发更多的位错源开动和部分抑制位错的交滑移,由此提升了Q-P-T钢的强度。而动态条件下断裂方式的转变和绝热温升效应有利于塑性的提升,但高应变速率部分抑制了DARA效应、TRIP效应和BCP效应以而降低钢的塑性,两者的共同作用使Q-P-T钢的塑性较准静态稍有提升。关键词:先进高强度钢(AHSS)论文高强塑性论文淬火-分配-回火(Q-P-T)工艺论文淬火和回火(Q&T)工艺论文残余奥氏体论文残余奥氏体吸收位错(DARA)效应论文相变诱发塑性(TRIP)效应论文阻碍裂纹扩展(BCP)效应论文微观组织表征论文动态力学性能论文

    摘要6-10

    ABSTRACT10-17

    第一章 绪论17-51

    1.1 引言17-18

    1.2 先进高强度钢的进展历史和探讨近况18-31

    1.2.1 马氏体钢20-21

    1.2.2 双相钢21-22

    1.2.3 TRIP 钢22-23

    1.2.4 TWIP 钢23-24

    1.2.5 纳米贝氏体钢24

    1.2.6 Q&P 钢24-28

    1.2.7 Q-P-T 钢28-31

    1.3 先进高强度 Q-P-T 钢与其它先进高强度钢的比较31-34

    1.4 先进高强度钢的强塑性机制34-40

    1.4.1 钢的主要强化机制34-37

    1.4.2 残余奥氏体的增塑机制37-39

    1.4.3 先进高强度钢的组织与成分设计思想39-40

    1.5 先进高强度钢的动态力学性能40-41

    1.6 本论文的探讨目的和作用41-43

    1 Q-P-T 钢和 Q&T 钢的力学性能比较76-78

    3.4.2 Q-P-T 钢和 Q&T 钢中残余奥氏体含量的 XRD 测定78-79

    3.4.3 Q-P-T 钢和 Q&T 钢的显微组织与断口形貌比较79-83

    3.4.4 浅析与讨论83-85

    3.5 形变温度对先进高强塑性 Q-P-T 钢力学性能和微观组织的影响85-97

    3.5.1 不同形变温度下 Q-P-T 钢的力学性能86-87

    3.5.2 不同形变温度下 Q-P-T 钢中残余奥氏体的热稳定性87-89

    3.5.3 不同形变温度下 Q-P-T 钢的微观组织表征89-96

    3.5.4 浅析与讨论96-97

    3.6 小结97-99

copyright 2003-2024 Copyright©2020 Powered by 网络信息技术有限公司 备案号: 粤2017400971号