您的位置: turnitin查重官网> 工程 >> 工程质量 >结构设计论概念设计在建筑结构设计中运用

结构设计论概念设计在建筑结构设计中运用

收藏本文 2024-03-21 点赞:31817 浏览:145194 作者:网友投稿原创标记本站原创

摘要:运用概念性近似估算方法, 可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择, 易于手算。所得方案往往概念清晰、定性正确, 避免后期设计阶段一些不必要的繁琐运算, 具有较好的经济可靠性能。同时, 也是判断计算机内力分析输出数据可靠与否的主要依据。本文阐述了概念设计的涵义及重要性,探讨了概念设计在建筑结构设计中重要性。
关键词:概念设计;建筑结构设计;涵义;重要性;应用

随着我国经济的快速发展,中国的建筑领域也有了很大发展,建筑物不仅仅是为了满足使用功能,更多的是建筑能具有更美观的立面效果,造型越来越多元化,这就给结构设计提出了更高要求。在满足安全的前提下,更经济,更美观,更合理。尤其是经历5.12汶川大地震之后,更要求结构设计人员从安全与经济之间找到一个平衡点,把有限的资源应用到有效的地方,设计出更科学更合理的结构。为达到这一目的,人们越来越注重以概念设计来控制结构设计。

一、概念设计的涵义

所谓的概念设计一般指不经数值计算,尤其在一些难以作出精确理性分析或在规范中难以规定的问题中,依据整体结构体系与分体系之间的力学关系、结构破坏机理、震害、试验现象和工程经验所获得的基本设计原则和设计思想,从整体的角度来确定建筑结构的总体布置和抗震细部措施的宏观控制。运用概念性近似估算方法,可以在建筑设计的方案阶段迅速、有效地对结构体系进行构思、比较与选择,易于手算。所得方案往往概念清晰、定性正确, 避免后期设计阶段一些不必要的繁琐运算,具有较好的经济可靠性能。同时, 也是判断计算

源于:免费论文www.udooo.com

机内力分析输出数据可靠与否的主要依据。
概念设计的思想被越来越多的结构工程师所接受,并将在结构设计中发挥越来越大的作用。然而现在的高校教学中,往往只重视单独构件和孤立的分体系的力学概念讲解。尤其在专业课教学中,单项计算练习居多,综合练习偏少,并着重体现在考题中,使得相当部分学生养成只知套用公式解题的习惯。而且近年来强调计算机应用教育,比如,毕业设计用结构设计软件计算、出图。但由于计算机设计过程的屏蔽,手算过程训练程度的削弱,造成学生产生一定依赖性,结果综合运用能力下降,整体结构体系概念模糊。这些对于培养具有创造力、未来的工程师是相当不利的。
随着社会经济的发展和人们生活水平的提高,对建筑结构设计也提出了更高的要求。发展先进计算理论,加强计算机的应用,加快新型高强、轻质、环保建材的研究与应用,使建筑结构设计更加安全、适用、可靠、经济是当务之急。其中, 打破建筑结构设计中的墨守成规, 充分发挥结构工程师的创新能力,是相当必要的。因为他们是结构设计革命的推动者和执行者。这则需要工程界和教育界进行共同的努力。推广概念设计思想是一种有效的办法。

二、概念设计的重要性

概念设计是展现先进设计思想的关键,结构设计的好坏,很大程度上取决于设计者结构概念的完整性及创新能力,特别是建筑业飞速发展的今天,概念设计的重要性更是可见一斑。结构设计决定建筑能否实现,在这个意义上,结构设计显得更为重要。建筑结构设计可分为整体设计和部件设计两部分。整体设计包括结构体系的选择,柱网的布置,梁的布置,剪力墙的分布,基础的选型等。整体设计一般分主体和基础两部分进行、设计人员根据建筑物的性质、高度、重要程度、当地的抗震设防烈度,风力情况等条件来选择合适的结构体系。选定结构体系后,就要具体决定柱、梁、墙(剪力墙)的竹布和尺寸等。在进行主体结构内力计算后,主体结构,截面的内力成了基础选型和设计的重要依据。

三、概念设计在建筑结构设计中的应用

1、平面设计

在水平荷载作用下结构侧移已成为高层建筑设计中的关键控制因素,如何在满足相关要求的前提下选择更好的抗侧力体系成了结构工程师追求的重大目标。建筑平面的形状宜选用风压较小的形式,并应考虑邻近高层建筑对其风压分布的影响,还必须考虑有利于抵抗能力和竖向荷载,在地震作用下,建筑平面要力求简单规则。风荷载作用下则可适当放宽,因为结构整体弯曲变形所引起的侧移与结构体系抵抗倾覆力矩的有效宽度的三次方成反比例关系,所以不宜建筑宽度很小的建筑物。

2、 剖面设计

(1)竖向传力体系设计。(a)应注意控制建筑的高度比。(b)高层建筑的抗侧力结构刚度,应注意由基础向顶层逐渐过渡,要尽量避免出现在竖向上刚度发生突变的现象,以免由于刚度的较大突变而削弱其抵抗水平荷载的能力。(c)由于使用上的要求造成刚度变化特别大,或结构布置发生变化时必须设置结构转换层。(d)高层建筑必须有相应的锚固深度,此锚固深度可结合布置设备用房和地下停车库的需要,作为一层或多层地下空间,这对降低高层建筑的重心有利,可提高建筑抗震能力及抗倾覆能力。
(2)竖向形体设计。(a)截锥形。采用由下而上分段逐渐减小楼层面积阶梯状体型,能使房屋刚度大大增加,由于房屋顶部的楼面尺寸比底部小,除了在建筑使用功能方面存在优点外,在抗风和抗震方面也具有一定的优越性。(b)上窄下宽形。高层建筑随着高度的增加在符合竖向结构的要求下,楼身向上不断收进与变细,这样可减轻承受的风力,降低楼体的重心,加强结构的稳定性,这种形体主要包括上削楔形体和退缩体,上削楔形体利于抗风,抗震,并呈现稳固坚韧的特性,退缩体的形式比较多样,有收进式,截切式,台阶式。(c)新月形。新月形房屋就像一个竖向的悬臂壳体一样,能有效地增加它低抗侧向力的刚度,它的作用就像波形的屋面壳体能有效地抵抗重力荷载一样,重力荷载由柱—壳—框架承受,侧向荷载由竖向的壳体抵抗,该壳体由于楼面结构的加劲作用而得以加强,新月形的壳体形式能有效地抵抗对称作用与它的侧向力。

3、基础设计概念

(1)基础与上部结构协同作用。基础除了与地基相互作用外,与上部结构作用的关系也很复杂,除非在建筑的边缘部位荷载很大的情况以外,一般建筑基础的变形总是成锅底开肿部沉降多,外级沉降小,在建造下部几层时,基础钢筋应力不断增长,建筑到四五层时钢筋应力达到最高值,以后随层数和荷载的增加应力又逐渐减小,这种现象是基础和上部结构协同作用的结果,当上部结构高低层数差别很大,但地下室有直通要求时,应做成整体基础,高低层不分开是有条件的,首先地基地质要好,或采用桩基。要求地基沉降量不能过大,重要的是控制高低层的沉降差,天然地基的建筑,高层部分一般采用满堂红基础,低层部分采用双向条形或单独基础,高层建筑常设有通往地下车库的通道,通道紧贴高层的外壁,并平行于外壁,作为车道的底板,便于铺防水层,也保证了高层建筑的整体连接。
(2)基础选型及特点。根据不同建筑的地理位置结构形式可选择桩基础,箱形基础和筏形基础。桩基础,当地基土质较软弱,建筑物层数较多,荷载较大的情况下,天然地基不能满足地基承载力的要求可以采用桩基将上部结构荷载直接传到下部坚实的持力层,高层建筑的桩基础可采用预制钢筋混凝土桩,混凝土灌注桩和钢管桩。箱形基础,箱开基础在高层建筑中广泛应用,它整体刚度好,能将上部结构的荷载均匀地传给基础,对上部结构能良好地嵌固,箱基有效地抵抗不均匀沉降,并与周围土体协同工作,提高建筑物的抗震和抗风能力。筏形基础,筏形基础适用于上部结构荷载较大,地基承载力较低的工程,筏形基础整体较好,刚度大,能有效地分散上部结构的荷载,调整基底的压力和不均匀沉降。
综上所述,概念设计,从某种程度上可以认为是整体工作的原则,在计算机辅助设计日益广泛的今天,要求结构工程师具有深厚的基本理论基础,清晰的结构整体概念,这样才能做出更安全,更经济,更高效的作品。
参考文献:
田庆海.建筑结构概念设计解读及其意义[J]. 科技创新导报. 2009(18)
侯小红.结构概念设计与结构措施[J]. 山西科技. 2008(06)
[3] 高鹏,乔可义.重视概念设计,提高建筑结构设计的质量[J]. 黑龙江科技信息. 2011(03)
[4] 于应平.浅议建筑结构设计中的概念设计[J]. 黑龙江科技信息. 2009(18)

copyright 2003-2024 Copyright©2020 Powered by 网络信息技术有限公司 备案号: 粤2017400971号