您的位置: turnitin查重官网> 工程 >> 土木工程 >大体积混凝土温度裂缝成因分析与控制措施中心

大体积混凝土温度裂缝成因分析与控制措施中心

收藏本文 2024-02-20 点赞:5967 浏览:16915 作者:网友投稿原创标记本站原创

【摘要】大体积混凝土的应用日益广泛,但是在实际应用中,如何控制大体积混凝土产生温度裂缝仍是较难解决的问题。本文就大体积混凝土温度裂缝的成因进行分析,并从设计、施工、材料、温控技术等方面总结了控制温度裂缝出现的措施,以达到控制温度裂缝的目的,以指导实践。
【关键词】大体积混凝土;温度裂缝;控制措施;温度监测
随着经济建设的迅猛发展,大体积混凝土在现代建筑工程中已得到广泛应用。但在大体积混凝土施工中,由于水泥水化热引起混凝土浇筑体内部温度剧烈变化,使混凝土浇筑体早期塑性收缩和混凝土硬化过程中的收缩增大,使混凝土浇筑体内部的温度-收缩应力剧烈变化,而导致混凝土浇筑体或构件发生裂缝的现象并不罕见。因此,在大体积混凝土施工中,如何控制、防止温度裂缝的出现是施工的难点也是重点。

1 大体积混凝土温度裂缝成因分析

1.1 温度及温度效应

混凝土结构物的温度分布是指某一时刻混凝土结构内部及表面各点的温度状态。当混凝土结构浇筑后,由于混凝土内部的水化热、外界的太阳辐射以及气温变化等因素的影响,混凝土结构内部会处于不同的温度状态。影响混凝土结构温度分布的因素主要有内部和外部两大类。
1)外界温度的影响
自然环境中的混凝土结构物,受大气温度变化作用,而各种气象因素在一年四季、每天甚至每时每刻都在发生变化。混凝土结构的最大温差与不同季节的气候特征有密切关系。
混凝土结构中发生的温度变化,与结构的方位、表面朝向很有关系。结构的水平表面最高温度发生在中午太阳辐射最强烈时刻之后,同时在混凝土结构物的向阳面与背阳面间发生最大温差;垂直表面上的最高温度随表面朝向不同而在不同时刻出现,发生壁厚方向的最大温差分布。
2)水化热
水泥水化释放的水化热会引起混凝土浇筑块内部温度剧烈变化,是影响混凝土温度分布的主要内部因素。

1.2 结构约束

大体积混凝土结构受到的约束,一般分为内约束和外约束两种。
1)内约束
一个物体或一个构件本身各质点之间的相互约束作用,称为“内约束”。
大体积混凝土在水泥水化时,会形成外低内高的温差,这种温差会使大体积混凝土内部温度分布不均匀,会引起质点发生的变形不一致,从而产生内约束。大体积混凝土中心由于温度较高,所产生的热膨胀也较表面大,因而在混凝土中心产生压应力,而表面则产生拉应力。当表面拉应力超过混凝土的抗拉强度时,就会在大体积混凝土的外表面产生裂缝,这种裂缝比较分散、裂缝宽度小、深度也很小,俗称“表面裂缝”。它一般发生在浇筑后的温度上升阶段,是由于混凝土体积发生膨胀所形成的。
2)外约束
一个物体的变形受到其他物体的阻碍,一个结构的变形受到另一个结构的阻碍,这种结构与结构之间、物体与物体之间、物体与构件之间、基础与地基之间的相互牵制作用,称作“外约束”。

2 大体积混凝土温度裂缝控制措施

大量工程实践经验都证明,结构物不可能不出现裂缝,裂缝是材料的一种固有缺陷、固有特征。如果对大体积混凝土的裂缝作过于严格的限制,则施工难度大,会带来成本的急剧上升。但可以采取措施,对裂缝进行控制。

2.1 设计

(1)改变约束条件,设置滑动层。基础垫层和基础之间采用三毡四油防水层作为滑动层减小地基对基础的约束,降低约束应力。
(2)设置构造钢筋。在大体积混凝土内设置必要的温度配筋,配筋宜选用小直径、小间距;在截面突变和转角处,孔洞转角及周边,增加斜向构造配筋,以改善应力集中,防止裂缝出现。
(3)在易裂的边缘部位设置暗梁,提高该部位的配筋率。
(4)合理设置后浇带,保留时间大于60d;后浇带内梁中钢筋连续通过,板中钢筋可断开,在二次浇筑混凝土前,根据规范要求连接板中普通钢筋。

2.2 材料

1)水泥
针对大体积混凝土结构的特点,选择低水化热水泥。因为其在检测定外部温度没有变化的情况下,可减少混凝土的内外温差T值,起到减少温度应力的作用。选择水泥时,还应合理控制好水泥的细度,这样,才能在减少温度应力的同时,确保水泥混凝土的早期强度,从而更有效地控制温度裂缝。
2)矿物掺合料
在施工中,掺入20%~40%的粉煤灰,可取代一部分水泥,从而消减水化热产生的高温峰值。另外,粉煤灰还可以优化水泥石内部结构,提高混凝土早期强度。
3)集料
集料在混凝土中的体积超过50%,在成型阶段是一种导热介质,因此,选择导热系数高、热传导能力强的集料,可有效降低混凝土的内外温差T值。另外,集料自身的温度对水化热的产生也有一定的影响,集料自身温度越高,水化热也就越大。因此,在制备混凝土时,应根据当日气候和集料温度,对集料进行必要的降温处理。
4)外加剂
在控制大体积混凝土温度裂缝时,外加剂应选择能调节混凝土凝结时间和硬化性能的缓凝剂、减水剂。

2.3 施工

1)用分层连续浇筑或推移式连续浇筑混凝土采用分层连续浇筑或推移式连续浇筑,混凝土层间的间隔时间应尽量缩短,必须在前层混凝土初凝之前,将其次层混凝土浇筑完毕。层间最长的时间间隔不大于混凝土的初凝时间。当层间间隔时间超过混凝上的初凝时间,层面应按施工缝处理:
(1)消除浇筑表面的浮浆、软弱混凝土层及松动的石子,并均匀露出粗骨料;
(2)在上层混凝土浇筑前,应用压力水冲洗

中国论文中心www.udooo.com

混凝土表面的污物,充分湿润,但不得有水;
(3)对非泵送及低流动度混凝土,在浇筑上层混凝土时,应采取接浆措施。
2)二次投料及二次振捣
大量的工程实践证明,采用二次投料水泥裹砂法和二次振捣法,可提高混凝土的极限抗拉强度。
所谓二次投料水泥裹砂法,即先将水和水泥拌成水泥浆,搅拌时间大约1min,然后加入砂子和石子,搅拌成混凝土。该法可改善混凝土内部结构,减少混凝土浇筑入模时的离析现象,节约水泥达20%,或提高强度15%。二次振捣的具体适宜时间,需根据水泥品种、用量、混凝土的坍落度和气温等因素决定,一般应控制在混凝土浇筑后1~3h时间内。
3)埋设冷却水管,降低混凝土内部温度对施工要求比较高的工程,可以在混凝土内埋设水管,通过低温水循环,排出混凝土内部大量热量,以降低混凝土温度。
4)加强施工管理
提高混凝土的质量,以保证混凝上强度的均匀性;薄层、短间歇、均匀上升,以避免相邻浇筑块之间过大的高差及侧面的长期暴露;加强混凝土养护。

2.4 温度监测

温度监测技术是现代大体积混凝土施工的先进技术。通过对混凝土温度的监测,实时监控混凝土内部温度变化的情况,采取相应控制措施,可有效控制裂缝的产生。大体积混凝土温度控制的测试内容如下。
1)混凝土绝热温升的测试
混凝土绝热温升的测试有两种方法:间接法和直接法。间接法是用水泥的水化热、水泥用量、混凝土比热、混凝土密度来计算混凝土绝热温升;直接法是用混凝土绝热温升实验仪直接测定混凝土绝热温升。直接法测定结果准确,但是,实验设备和实验过程比较复杂,一般用于大型工程中。中小型工程常不具备这种条件,一般用间接法即可满足要求。
2)混凝土浇筑温度的监测
监测混凝土浇筑时的温度,保证浇筑温度不要超过控制标准,以便控制混凝土浇筑后的温度升高峰值。同时,也包括对混凝土搅拌、运输过程中温度的监测和混凝土原材料温度的监测。
3)养护过程中的温度监测一般监测浇筑后混凝土内部、表面、底部的温度和环境气温的变化情况,用来控制混凝土的降温速度和内外部温差(一般要求温差ΔT≯25℃),也可用来进一步计算混凝土中的温度应力,确定混凝土的抗拉强度是否大于此时混凝土中产生的拉应力,保证对裂缝的控制。这些监测结果能及时反馈现场大体积混凝土浇筑块内温度变化的实际情况,以及所采用的施工技术措施的效果,为工程技术人员及时采取温控对策提供科学依据。
混凝土的浇筑温度,系指混凝土振捣后位于混凝土上表面以下50~100mm深处的温度。混凝土浇筑温度的测试每工作班(8h)不应少于2次。
大体积混凝土浇筑块体内外温差、降温速度及环境温度的测试,一般在前期每2~4h测一次,后期每4~8h测一次。
大体积混凝土浇筑块体温度监测点的布置,以能真实反映出混凝土块体的内外温差、降温速度及环境温度为原则。

2.5 养护

混凝土浇筑完毕后,应及时按温控技术措施的要求进行保温养护,并应符合下列规定:
(1)保温养护措施,应使混凝土浇筑块体的内外温差及降温速度满足温控指标的要求;
(2)保温养护的持续时间应根据温度应力包括混凝土收缩产生的应力加以控制、确定,但不得少于15d,保温覆盖层的拆除应分层逐步进行;
(3)在保温养护过程中,应保持混凝土表面的湿润。
同时,在养护过程中,保持良好的湿度和抗风条件,使混凝土在良好的环境下养护。施工人员需根据事先确定的温控指标的要求,来确定大体积混凝土浇筑后的养护措施。
3 结语
综上所述,大体积混凝土温度裂缝控制是一项系统而细致的工作,涉及到设计、材料、施工、温控技术等诸多因素。为了控制温度裂缝,必须通过科学、合理的结构设计、优化配合比设计,采取合理措施降低混凝土结构的约束,按照大体积混凝土施工要求认真组织施工,做好混凝土养护和温度监测工作,这样才可以有效防止、控制温度裂缝的出现。
参考文献
陈辉 韩芳垣,大体积混凝土温度裂缝的成因分析及控制措施[J].混凝土,2

源于:党校毕业论文www.udooo.com

006.02
徐思东, 大体积混凝土温度裂缝成因分析及其控制措施[J].科协论坛(下半月),2011.04

copyright 2003-2024 Copyright©2020 Powered by 网络信息技术有限公司 备案号: 粤2017400971号