您的位置: turnitin查重官网> 管理学 >> mba >> mba排版的要求 >现代建筑结构设计和应用

现代建筑结构设计和应用

收藏本文 2024-03-11 点赞:20527 浏览:94069 作者:网友投稿原创标记本站原创

摘要:文章根据建筑结构设计工程的特点,从结构刚度,控制设计等方面进行分析,提出了建筑结构设计方面应注意的问题,供同行参考.
关键词:建筑结构控制设计结构设计
前言
鉴于四川灾害的事迹表明;现代建筑结构在遭受地震作用时不破坏或不倒塌,最基本要具备两个条件:
结构的主要部位有足够的强度储备.
结构的主要部位对地震作用下的强追变形有充分的适应能力.
如单纯满足前者,往往需要耗用过多的材料,且若遭受强烈地震作用,结构仍可能破坏或倒塌。从而提出抗震结构按两阶段设计,即在弹性阶段按强度控制,在弹塑性阶段按变形控制,这样设计的结构,既有一定的强度,又具有较大的延性和耗能能力,能一定程度地适应强烈地震使结构产生的强迫变形。
1建筑结构在抗震中的控制设计
l.1机构控制
分析框架和抗震墙结构的倒塌模式的基础上,提出对破坏机构进行控制,使之发生期望的破坏机构形式,达到既具有足够强度又具有足够延性的目的。实现途径是在结构的特定位置设置一定数量的人工塑性铰,对塑性程度及

摘自:写论文www.udooo.com

区域进行控制,使得结构在强震时能形成最佳耗能机构。对于一个实际的多层、高层建筑结构,如何实现机构控制。即人工铰的构造、布置和出现顺序的确定,是方案实施的重要关键.

1.2粱的延性设计

(直腰筋或交叉斜筋),可以增强粱端的抗震性能,特别是对于剪跨比小的梁,延性和耗能均有大幅度的提高。用作抗震墙墙肢间的普通连梁和刚性连梁的延性和耗能特赶对整个抗震墙结构的工作影响极大。试验表明,当连粱的跨高比为5时,延性和耗能很好,连梁两端相对竖向位移的延性系数都在8以上,滞回曲线也相当饱满。当连梁的跨高比降至1时,延性系数则降至3左右,滞回曲线严重捏扰,耗能很小,最后弯剪破坏。
抗震墙的刚性连粱,其跨高比往往仅为1左右,若要使其工作在弹塑性阶段作耗能构件,则需要对它的组成和构造采取一定措施,以适应延性和耗能的要求。措施之一是在1/2梁高的中性面上留一水平通缝。在缝的上、下两侧各埋置钢板,钢板上开有椭圆形螺栓孔,用高强螺栓把两钢板连结。在竖载、风载和小震下,高强螺栓把水平通缝分开的两部分连梁连结成整体工作,使刚性连粱整体刚度不变,以保证其工作在弹性阶段.
在强烈地震作用下,两钢板发生相对滑动,原来跨高比为1的刚性连梁将被分成两根跨高比为2的小粱协同工作。这样,不仅延性系数由原来的3提高为l0左右,而且由于钢板间的滑动摩擦,使其耗能能力也得到了一定改善。措施之二是在刚性连梁内埋设一根工字型钢,以提高其延性和耗能能力。

1.3柱的延性设计

如果塑性铰发生在柱上,但是它们仍需具有一定的延性和耗能能力,才能保证大震时不倒。试验表明,采用螺旋箍筋能较大程度地提高柱的延性和后期抗轴压能力。螺旋箍筋分为矩形箍和圆形箍,单旋箍和复台箍。其中复合螺族旋箍效果最好,圆形箍比矩形箍要好。

1.4新型复合材料节点

节点的合理设计是提高结构抗震性能的关键之一。而提高其强度和延性仅靠增加箍筋效果不显著,而且太多箍筋给施工带来较大的困难。因而不少学者致力于一些新型节点的研究,其中以钢纤维砼和劲性砼粱柱节点效果较好。这种节点由于劲性钢材或钢纤维与砼的共同工作,使得节点区砼的受力性能,特别是剪切变形大大改善,延性和耗能能力显著提高。

1.5折曲撑和偏心连结支撑

一般的交叉支撑框架剪切变形能力低、刚度降低幅度大、耗能差,采用折曲撑或偏心连结支撑抗侧力单元,可以改善这些缺点,其中折曲撑由钢纤维砼杆制造,偏心连结支撑可用钢杆或劲性钢筋砼杆组成。设计原则是在强震时让折曲撑先弯折破坏,然后梁才破坏,即形成撑一梁一柱的理想破坏机制。由于曲撑的存在和钢纤维砼的良好变形能力。整个框架单元的延性和耗能性能好,而且在正常使用荷载下,曲撑又能保证一定的抗凹刚度
综上分析表明,结构本身的延性耗能设计是靠提高构件的延性耗能
能力来实现。结构的构件无非是粱、板、柱和墙等,内部受力材料是受力筋、构造筋(对于劲性砼则是型钢)以及砼,延性耗能设计只能从这些材料的位置数量和构造方式来实现,显然该方式能提高结构的抗震能力。
2结构刚度在建筑结构中的优化设计
在高层建筑结构设计中,现行的规范是《高层建筑混凝土结构技术规程》(下简称《规程》高层建筑层数多、高度大,为保证高层建筑结构具有必要的刚度,应对其层间位移加以控制。这个控制实际上是对构件截面大小、刚度大小的一个相对指标。高层建筑的抗侧刚度对结构的抗震性有很大的影响,应设计的刚些,还是柔些,不同的设计人员有不同的看法。目前大多数建筑都设计的比较刚,特别是高层住宅,由于房间布置的要求,开间较小,这样剪力墙布置较多,而且墙厚较厚,比较浪费。在结构结算时,计算的最大弹性层间位移角只有1/2000~1/3000,甚至更小。
一般来说,由于土质较好,基岩埋深也普遍较浅,且高层建筑多采用桩基础,或者有1~2层的地下室,持力层座落在中,微风化岩层或者中硬场地土层,地基的特征周期值较小。所以在此条件下,高层建筑的抗侧高度一般可以设计得柔些,以结构的极限变形能力(可按照《规程》的弹性层间位移角限值剪力墙结构为1/lOOO)作为控制值。在满足变形的限值的前提下,结构刚度可尽可能设计的小些,这样既降低了地震作用,也使场地与建筑物发生共振的可能性减小,而且也达到了经济目的。大多数工程实践证明,建在较硬场地上的高层建筑可以按变形控制,以柔克刚,既安全又经济。
3建筑结构工程的特点与设计重用目标
结构工程的设计对象是包括梁、板、柱、墙和基础等构成建筑基本形体的力学构件和体系。因为每个建筑都是一个作品,所以与之配套的每个结构都是一个写作工程。这意味着不同建筑的结构构件及其体系的尺寸和构成都要按需设计,工程与工程之间缺乏可通用的部分。同时,结构不同于机械,它没有零件,所有构件固定在一起形成有机的整体,虽然可以人为地划分构件、房间或楼层等部分,但划分的标准模糊,具有很大的随意性,较难实现零件化,更谈不上部件的标准化和通用化。在一个难以零件化、标准化和通用化的工程环境中,需要寻找新的设计重用策略。设计重用的本质是通过充分利用已有的设计成果提高新设计的设计效率。
只要不同的设计中存在相同或相似的部分,理论上就可以采用设计重用的方法减少重复工作量。在一个建筑工程内存在很多重复内容。由于建筑物必须自下而上逐层建造,各个楼层的平面布局逐层渐变,相邻和相近楼层存在相当数量的重复内容。
4建筑结构设计应注意的问题

4.1关于箱、筏基础底板挑板的阳角问题

阳角面积在整个基础底面积中所占比例极小,可以砍了。可砍
成直角或斜角。如果底板钢筋双向双排,且在悬挑部分不变,阳角不必加辐射筋。

4.2关于箱、筏基础底板的挑板问题

从结构角度来讲,如果能出挑板,能调匀边跨底板钢筋,特别是当底板钢筋通长布置时,不会因边跨钢筋而加大整个底板的通长筋,较节约。出挑板后,能降低基底附加应力,当基础形式处在天然地基和其他人工地基的坎上时,加挑板就可能采用天然地基。必要时可加较大跨度的周圈窗井。能降低整体沉降,当荷载偏心时,在特定部位设挑板,还可调整沉降差和整体倾斜。窗井部位可以认为是挑板上砌墙,不宜再出长挑板。虽然在计算时此处板并不应按挑板计算。当然此问题并不绝对,当有数层地下室,窗井横隔墙较密,且横隔墙能与内部墙体连通时,可灵活考虑。

4.3关于粱、板的计算跨度

一般的手册或教科书上所讲的计算跨度,如净跨的l,1倍等,这些规定和概念仅适用于常规的结构设计,在应用E1广的宽扁梁中是不合适的。粱板结构,简单点讲,可认为是在梁的中心线上有-N性支座,取消粱的概念,将梁板统一认为是一变截面板。在扁粱结构中,梁高比板厚大不了多少时,应将计算长度取至粱中心,选梁中心处的弯距和梁厚,及梁边弯距和板厚配筋,取二者大值配筋(借用台阶式独立基础变截面处的概念)。柱子也可认为是超大截面粱,所以梁配筋时应取柱边弯距。削峰是正常的,不削峰才有问题。

4.4钢筋采用机械连接或焊接

纵筋搭接长度为若干倍钢筋直径d,一般情况下,d取钢筋直径的较小值,这是有个前提,即大直径钢筋强度并未充分利用。否则应取钢筋直径的较大值。如框架结卡句顶层的柱子纵筋有时比下层大,d应取较大的钢筋直径,甚至纵筋应向下延伸一层。其实,两根钢筋放一起,用铁丝捆一下,能起多大用,还消弱了钢筋与混凝土的握裹力。所以,钢筋如有可能尽量采用机械连接或焊接。

4.5关于回弹再压缩

基坑开挖时,摩擦角范围内的坑边的基底土受到约束,不反弹,坑中心的地基土反弹,回弹以弹性为主,回弹部分被人工清除。当基础较小,坑底受到很大约束,如独立基础,回弹可以忽略,在计算沉降时,应按基底附加应力计算。当基坑很大时,相对受到较小约束,如箱基,计算沉降时应按基底压力计算,被坑边土约束的部分当做安全储备.
5结束语
总的来说,通过对以上各类常见建筑结构问题的分析,可以加强结构设计人员对常见结构设计问题的辨别能力,提高对结构设计质量问题的防治措施,使建筑结构设计工作做行更安全、更合理。
参考文献
1高立人,王跃.结构设计的新思路———概念设计,工业建筑,1999(1).
2戴国莹,李德虎.建筑结构抗震鉴定及加固的若干问题,建筑结构,1999(4).
3林同炎.S.D.思多台斯伯利,结构概念和体系,中国建筑工业.
4吴静.高层建筑钢框架支撑形式的不同对其受力性能的影响.安徽建筑,2003(1).

copyright 2003-2024 Copyright©2020 Powered by 网络信息技术有限公司 备案号: 粤2017400971号